II B.Tech - I Semester - Regular/Supplementary Examinations November 2019

ELECTRICAL CIRCUIT ANALYSIS - II (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks
$11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) State Millman's theorem.
b) State Maximum power transfer theorem for complex impedance circuits.
c) State Reciprocity Theorem.
d) Write the conditions for reciprocity and symmetry in admittance parameter representation of a two port network.
e) Express A and D in terms of impedance parameters.
f) State superposition property of Laplace transform.
g) State initial value theorem of Laplace transforms.
h) What are Dirichlet conditions?
i) What is the voltage across the capacitor C at $\mathrm{t}=0^{+}$, when a series RC circuit is connected to a voltage V at $t=0$. (Assume the capacitor is initially discharged).
j) Draw the steady state DC response of current in RC circuit.
k) What is the condition for the transient current to be oscillatory in RLC circuit?

PART - B

Answer any THREE questions. All questions carry equal marks. $3 \times 16=48 \mathrm{M}$
2. a) Obtain the Thevenin's equivalent at the terminals $\mathrm{A} \& \mathrm{~B}$ for the circuit shown below.

b) Determine the load resistance to receive the maximum power from the source. Also find the maximum power delivered to the load.

3. a) The impedance parameters of a two port network are $\mathrm{Z}_{11}=4 \Omega, \mathrm{Z}_{22}=8 \Omega, \mathrm{Z}_{12}=\mathrm{Z}_{21}=6 \Omega$. Compute the ABCD parameters and admittance parameters.
b) Find the h parameters for the circuit shown below. 8 M

4. a) State and prove the Convolution theorem.
b) Determine the Fourier series for the periodic square wave shown below.

5. a) A resistor $\mathrm{R}=10 \Omega$, inductor $\mathrm{L}=0.5 \mathrm{H}$, capacitor $\mathrm{C}=10 \mu \mathrm{~F}$ are connected in series with a switch and a DC voltage of 150 V in the circuit. When the switch is closed at $\mathrm{t}=0$, find the current transient.
b) Using Laplace transform, determine the current response of a RC circuit for a step input.
6. a) A resistor $\mathrm{R}=10 \Omega$, inductor $\mathrm{L}=0.05 \mathrm{H}$ and capacitor $\mathrm{C}=100 \mu \mathrm{~F}$ are connected in series with a switch. A sinusoidal voltage of $100 \operatorname{Sin}(314 t+\varphi)$ is applied to the circuit. When the switch is closed at $\varphi=30^{\circ}$, Derive the expression for current.
b) A resistor $\mathrm{R}=5 \Omega$ and inductor $\mathrm{L}=2 \mathrm{H}$ are connected in series with a switch and supply voltage of $100 \operatorname{Sin}(200 t)$. Determine the transient current.

